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LU Factorisation and the solution of linear systems of equations 
 

LU factorization or decomposition involves a method for writing a matrix as the 
product of a lower-triangular matrix (denoted L) and an upper-triangular matrix 
(U)1. LU factorization is useful in solving problems such as linear systems of 
equations or matrix-vector systems2, generally of the form  
 

𝐴 𝑥 =  𝑏 , 

 
where 𝐴 is a matrix and 𝑥 and  𝑏 are vectors. Through the determination of the 

LU factors of  𝐴, we can write 𝐴 = 𝐿𝑈, and hence that 
 

𝐿𝑈 𝑥 =  𝑏 . 

 
The solutions of the latter equation can now be realised in two stages, both of 
which are a straightforward sequence of substitutions. Firstly a solution ‘𝑦’ is 
found to the system 𝐿 𝑦 =  𝑏 and then the sought solution 𝑥 is found from solving 

 𝑈𝑥 =  𝑦 .  

 
The method of solving systems of the form  𝐴 𝑥 =  𝑏 through LU factorisation has 

parallels with the alternative method of Gaussian elimination3. From the point of 
view of a direct computational comparison, there is little to choose between the 
two methods. However LU factorisation has a significant strategic advantage in 
that the bulk of the computation occurs in the determination of the factors L and 
U and hence, once they are determined, a range of vectors 𝑏 can be applied, 

whereas in Gaussian eliminations the 𝑏  (or set of  𝑏 s) is specified before the 

processing takes place. 
 
In most cases LU factorisation is applied to square matrices and this will be the 
focus in this document. An Excel spreadsheet4  demonstrating LU factorisation 
and back and forward substitution has been developed along with a guide to 
using the spreadsheet. The spreadsheet illustrates the methods on 3⨉3, 5⨉5 and 
10⨉10 systems. The spreadsheet includes two subroutines in the visual basic 
(for applications) language: LUfac.bas5 for finding the LU factors of a matrix and 
LUbfsb.bas6 for carrying out the back and forward substitution. 
 
LU factorisation of a 2x2 Matrix 
 
In order to understand, illustrate the method, let is consider applying it to an 
example of a 2⨉2 system: 
 

(
2 1
3 2

) (
𝑥1

𝑥2
) = (

7
12

) 
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2 Linear systems and 2x2 matrices 
3 Gaussian Elimination 
4 LU.xlsm 
5 LUfac.bas 
6 LUfbsub.bas 
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The matrix in this system is 𝐴 = (
2 1
3 2

) or (
𝑎11 𝑎12

𝑎21 𝑎22
) = (

2 1
3 2

). 

 
The LU factorisation requires that the matrix 𝐴 is written as the product of a 
lower and an upper triangular matrix; 
 

(
𝑙11 0
𝑙21 𝑙22

) (
𝑢11 𝑢12

0 𝑢22
) = (

𝑎11 𝑎12

𝑎21 𝑎22
) . 

 
Matrix multiplication7 is then applied in order to derive equations relating the 
values of 𝑙11, 𝑙21, 𝑙22, 𝑢11, 𝑢12 and 𝑢22 to 𝑎11, 𝑎12, 𝑎21and 𝑎22: 
 

𝑙11𝑢11 = 𝑎11 , 
 

𝑙11𝑢12 = 𝑎12 , 
 

𝑙21𝑢11 = 𝑎21 , 
 

𝑙21𝑢12 + 𝑙22𝑢22 = 𝑎22 , 
 
For a 2⨉2 matrix, there are four equations and six unknowns. In general there 
are ‘n’ more unknowns than there are equations in the general LU factorisation, 
where n is the dimension of the matrix. In order to secure a unique solution, 
therefore, n values are pre-determined and it is the convention that the diagonals 
or the lower-triangular matrix L are all set to a value of 1. Hence for a 2×2 
system 

(
1 0

𝑙21 1
) (

𝑢11 𝑢12

0 𝑢22
) = (

𝑎11 𝑎12

𝑎21 𝑎22
)  

 
and 
 

𝑢11 = 𝑎11 , 
 

𝑢12 = 𝑎12 , 
 

𝑙21𝑢11 = 𝑎21 , 
 

𝑙21𝑢12 + 𝑢22 = 𝑎22 , 
 
 
For the example  
 

(
𝑎11 𝑎12

𝑎21 𝑎22
) = (

2 1
3 2

) , 

 
the equations above give 𝑢11 = 2 and 𝑢12 = 1 directly and then 𝑙21 = 1.5 and 
𝑢22 = 0.5 by substitution. This gives the following LU factorisation 
 

 
7 Matrix Arithmetic 
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(
1 0

1.5 1
) (

2 1
0 0.5

) =  (
2 1
3 2

) . 

 
Returning to the equation that we set out to solve: 
 

(
2 1
3 2

) (
𝑥1

𝑥2
) = (

7
12

), 

 
this may be written in the following form 
 

(
1 0

1.5 1
) (

2 1
0 0.5

) (
𝑥1

𝑥2
) = (

7
12

), 

 
by replacing A by its LU factors. 
 
This latter equation can be solved in two steps, using the method of forward 
substitution, followed by back substitution. 
 
Forward Substitution 
 
Forward substitution is applied in order to solve 
 

(
1 0

1.5 1
) (

𝑦1

𝑦2
) = (

7
12

). 

 
In forward substitution the elements of the unknown vector are found in 
sequence by following the matrix equation row by row. 
 

The top row of the matrix multiplied by the vector (
𝑦1

𝑦2
) is as follows: 

 
1 𝑦1 + 0 𝑦2 = 7, hence 𝑦1 = 7. 

 
Similarly the second row gives the following: 
 

1.5 𝑦1 + 1 𝑦2 = 12, hence 𝑦2 = 1.5, after the 𝑓𝑜𝑤𝑎𝑟𝑑 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑖𝑜𝑛 of ′7′for 𝑦1. 
 
Backsubstitution 
 
Backsubstitution is applied in order to solve the remaining problem 
 

(
2 1
0 0.5

) (
𝑥1

𝑥2
) = (

7
1.5

). 

 
In backward substitution the elements of the unknown vector are found in 
reverse order: 
 

0 𝑥1 + 0.5 𝑥2 = 1.5, hence 𝑥2 = 3 
 

2 𝑥1 + 1 𝑥2 = 7, hence 𝑥1 = 2, after the 𝑏𝑎𝑐𝑘𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑖𝑜𝑛 of ′3′for 𝑥2. 
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LU factorisation of a 3x3 Matrix 
 
In order to understand, illustrate and refine the method, let is consider applying 
it to an example of a 3⨉3 system: 
 

(
1 2 2
1 0 1
1 2 1

) (

𝑥1

𝑥2

𝑥3

) = (
5
1
3

) 

 

The matrix in this system is 𝐴 = (
1 2 2
1 0 1
1 2 1

) or (

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

) = (
1 2 2
1 0 1
1 2 1

). 

 
Let us return to the LU factorisation of a general 3x3 matrix: 
 

(

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

) = (
1 0 0

𝑙21 1 0
𝑙31 𝑙32 1

) (

𝑢11 𝑢12 𝑢13

0 𝑢22 𝑢23

0 0 𝑢33

) 

 
At the beginning of the process the unknown elements of L and U are greyed-out 
in the equation above. The LU factorisation method must determine these values. 
 
There are nine unknowns and nine equations: 
 

(

1 × 𝑢11 = 𝑎11 1 × 𝑢12 = 𝑎12 1 × 𝑢13 = 𝑎13

𝑙21 × 𝑢11 = 𝑎21 𝑙21 × 𝑢12 + 𝑢22 = 𝑎22 𝑙21 × 𝑢13 + 𝑢23 = 𝑎23

𝑙31 × 𝑢11 = 𝑎31 𝑙31 × 𝑢12 + 𝑙32 × 𝑢22 = 𝑎32 𝑙31 × 𝑢13 + 𝑙32 × 𝑢23 + 𝑢33 = 𝑎33

) 

 
We first note that the determination of the top row of U is straightforward. 
 
U – row 1 
 

(

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

) = (
1 0 0

𝑙21 1 0
𝑙31 𝑙32 1

) (

𝑢11 𝑢12 𝑢13

0 𝑢22 𝑢23

0 0 𝑢33

) 

 
In the equation above the blue elements are the ones that are evaluated at this 
stage and the yellow elements are the elements that are used. This leads to the 
following assignments. 
 

𝑢11 = 𝑎11 
𝑢12 = 𝑎12 
𝑢13 = 𝑎13 
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L - column 1 
 
Once 𝑢11  is evaluated, 𝑙21 and 𝑙31  can be evaluated straightforwardly 
 

(

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

) = (
1 0 0

𝑙21 1 0
𝑙31 𝑙32 1

) (

𝑢11 𝑢12 𝑢13

0 𝑢22 𝑢23

0 0 𝑢33

) 

 
Giving the equations: 

𝑙21⨉ 𝑢11 = 𝑎21 , 
𝑙31⨉  𝑢11 = 𝑎31 . 

 
 
That is 

𝑙21 = 𝑎21 / 𝑢11, 
𝑙31 = 𝑎31/ 𝑢11 . 

 
U – row 2 
 

(

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

) = (
1 0 0

𝑙21 1 0
𝑙31 𝑙32 1

) (

𝑢11 𝑢12 𝑢13

0 𝑢22 𝑢23

0 0 𝑢33

) 

 
 

𝑢22 = 𝑎22− 𝑙21 × 𝑢12 
 

𝑢23 = 𝑎23− 𝑙21 × 𝑢13 
 
L - column 2 
 

(

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

) = (
1 0 0

𝑙21 1 0
𝑙31 𝑙32 1

) (

𝑢11 𝑢12 𝑢13

0 𝑢22 𝑢23

0 0 𝑢33

) 

 

𝑙32 =
𝑎32− 𝑙31 × 𝑢12

𝑢22
 . 

 
U - row 3 

(

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

) = (
1 0 0

𝑙21 1 0
𝑙31 𝑙32 1

) (

𝑢11 𝑢12 𝑢13

0 𝑢22 𝑢23

0 0 𝑢33

) 

 
𝑢33 = 𝑎33−(𝑙31 × 𝑢13 + 𝑙32 × 𝑢23) 
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Example 

For the matrix in the example, (
1 2 2
1 0 1
1 2 1

), the application of the method 

outlined above gives the following results. 
 
U – row 1 

𝑢11 = 𝑎11 = 1 
𝑢12 = 𝑎12 = 2 
𝑢13 = 𝑎13 = 2 

 
L - column 1 
 

𝑙21 = 𝑎21 / 𝑢11 =
1

1
= 1, 

𝑙31 = 𝑎31/ 𝑢11 =
1

1
= 1 . 

 
U – row 2 
 

𝑢22 = 𝑎22− 𝑙21 × 𝑢12 = 0 − 1⨉2 =  −2 
 

𝑢23 = 𝑎23− 𝑙21 × 𝑢13 = 1 − 1⨉2 = −1 
 
L - column 2 
 

𝑙32 =
𝑎32− 𝑙31 × 𝑢12

𝑢22
=

2 − 1 × 2

−2
= 0. 

 
U - row 3 
 

𝑢33 = 𝑎33−(𝑙31 × 𝑢13 + 𝑙32 × 𝑢23) = 1 − (1⨉2 + 0⨉(−1)) = −1 
 
Hence the original matrix can be factorised as follows: 
 

(
1 0 0
1 1 0
1 0 1

) (
1 2 2
0 −2 −1
0 0 −1

) = (
1 2 2
1 0 1
1 2 1

) 

 
Substituting the LU factorisation into the original matrix-vector problem gives 
 

(
1 0 0
1 1 0
1 0 1

) (
1 2 2
0 −2 −1
0 0 −1

) (

𝑥1

𝑥2

𝑥3

) = (
5
1
3

). 

 
As with the 2x2 example, forward substitution is used to solve 
 

(
1 0 0
1 1 0
1 0 1

) (

𝑦1

𝑦2

𝑦3

) = (
5
1
3

) . 
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giving 𝑦1 = 5, 𝑦2 = −4, 𝑦3 = −2. Backsubstitution is then used to solve 
 

(
1 2 2
0 −2 −1
0 0 −1

) (

𝑥1

𝑥2

𝑥3

) = (
5

−4
−2

). 

 
yielding the solution  𝑥3 = 2, 𝑥2 = 1, 𝑥1 = −1, 
 
The LU factorisation algorithm 
 
The LU factorisation method described above evaluates the elements of the L and 
U matrices by first calculating the first row of the U matrix, then the first sub-
diagonal row of the L matrix, then the second row’s diagonal and super-diagonal 
element of the U matrix and then the second row of sub-diagonal elements of the 
U matrix. 
 
Each of the expressions of 𝑙𝑖𝑗 and 𝑢𝑖𝑗  have only the corresponding element of the 

matrix A (𝑎𝑖𝑗), the remaining terms are evaluated elements of L and U. This is a 

useful practical property of LU factorisation as a computational method; the L 
and U matrix elements can successively overwrite the original matrix A, L 
forming its lower triangle (excluding the diagonal, since the diagonal values of L 
are predefined) and U forming its upper triangle (including the diagonal). The 
over-writing of the matrix A by the elements of L and U saves computer memory 
and is standard within most implementations of the LU factorisation algorithm. 
 

For example in the LU factorisation of 𝐴 = (
1 2 2
1 0 1
1 2 1

), the L and U matrices 

(
1 0 0
1 1 0
1 0 1

)  and (
1 2 2
0 −2 −1
0 0 −1

) can be stored separately and separate to the 

matrix A. However, the upper triangular elements of L and the lower triangular 
elements of U are pre-defined and hence it wastes computer memory to store 
them as two separate matrices and they will be normally be stored as 

(
1 2 2
1 −2 −1
1 0 −1

), and again to save computer memory, that this matrix would 

over-write the original matrix A. 
 
The LU factorisation method discussed so far can be written in the form of the 
following pseudocode, which is also known as Crout’s Algorithm. The following 
algorithm is implemented in visual basic with the subrouting LUfac.bas8 within 
the module LUfac_module in the LU.xlsm9 Excel spreadsheet. 
 
 
 
 

 
8 LUFac.bas 
9 LU.xlsm 

http://www.mathematics.kirkup.info/
http://www.spreadsheets.kirkup.info/Matrices/LU/LUfac.htm
https://www.spreadsheets.kirkup.info/Matrices/LU/index.htm


www.mathematics.kirkup.info 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The LU factorisation algorithm involves 2𝑛3/3 flops and hence is 𝑂(𝑛3) 10. 
 
However, in the terms of a robust numerical algorithm, the method is not 
complete. We have not dealt with the possibility of a singular matrix A. Also the 
last line of the algorithm contains a division by a(i,i), which could take the value 
of zero (or close to zero) even when the original matrix is non-singular (and 
well-conditioned), causing the algorithm to fail. The algorithm requires 
improvement, if it is to be useful as a general purpose method for solving 
systems of equations, and, as with Gaussian elimination a ‘pivoting’ method is 
normally included, and this is considered in the next section. 
 
Pivoting 
 
Pivoting is included in the LU factorisation method so that division by zero or a 
‘small’ number is avoided. The LU factorisation algorithm can be viewed as 
passing through the diagonal elements and setting the row of U followed by the 
column on L in turn.  The worry with the LU factorisation method above is in the 
line a(i,j)=(a(i,j)-sum)/a(i,i); if a(i,i) is zero or ‘small’ then the method will fail or will 
not sustain numerical confidence. 
 
For example the following matrix is non-singular, but it would fail very early into 
the application of the method outlined above because of the zero in the first row 
and first column: 
 

(
0 4 −3
1 2 −1

−2 0 1
) 

 
The inclusion of (partial) pivoting involves exchanging rows. The exchange of rows 

has to be recorded and this is equivalent to maintaining a permutation matrix11 ‘𝑃’. 

Whereas the LU factorisation (without pivoting) of a matrix is unique (if it exists), the 

 
10 Big O notation in computing 
11 Permutation Matrix 

The LU factorisation method; Crout’s Algorithm 
' The main loop is a counter effectively down the diagonal 
for i=1 to n 
'  The first inner loop counts j=i..n, so that a(i,j) addresses the diagonal and super- 
'   diagonal elements of a on row i. That is ith row of the U matrix is formed. 
  for j=i to n 
   sum=0 
    for k=1 to i-1 
      sum=sum+a(i,k)*a(k,j) 
    a(i,j)=a(i,j)-sum 
'  The second  inner loop counts j=i..n, so that a(j,i) addresses the sub- 
'   diagonal elements of A on column i. That is the ith column of the L matrix is formed. 
     for j=i+1 to n 
      sum=0 
       for k=1 to i-1 
         sum=sum+a(j,k)*a(k,i) 
       a(i,j)=(a(i,j)-sum)/a(i,i) 
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inclusion of pivoting has the result of the outcome of the factorisation method 

depending on the pivoting method. 

 

In (partial) pivoting method, the divisor from each row is calculated. Exchanging the 

row with the largest pivot for the superdiagonal row that is to eliminated is the most 

straightforward form of pivoting. However, in the case when one row is made up of a 

set of element that are all smaller in magnitude then this may cause an unnecessary 

and actually counter-productive exchange of rows. For example with the matrix 

 

(
0.2 0.1
1 2

) 

 

the initial temptation would be to exchange rows since 1>>0.2, but this would be 

unnecessary and on balance unhelpful. Hence it is proposed that the row-norm is also 

taken into account. The following pseudo-code relates such a pivoting method. 

 

 

       
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Through applying a (partial) pivoting method within the LU factorisation 
algorithm, the result is generalised so that the matrix A is factorised as follows; 
 

𝑃𝐿𝑈 = 𝐴 , 
 
with a permutation matrix P included. 
 

The Pivoting Method 
'   Pass down from the diagonal to check which row would have the 
'    largest divisor. 
  uiicolmax = 0# 
  for j = i To n 
    sum = 0 
    for k = 1 To i - 1 
      sum = sum + a(j, k) * a(k, i) 
    reldivisor = (Abs(a(j, i) - sum)) / rownorms(perm(i)) 
    if (reldivisor > uiicolmax) Then 
      uiicolmax = reldivisor 
      imax = j 
 
'  If the largest divisor is zero or very small then the matrix is 
'   singular or ill-conditioned and the factorisation is abandoned 
  If (uiicolmax < Tiny) Then 
    MsgBox ("Matrix is Singular or very Ill-conditioned. LU factorisation is abandoned") 
    Exit Sub 
   
'  The rows are swapped and the exchange is recorded in perm 
  if (i <> imax) Then 
    for k = 1 to n 
      dum = a(imax, k) 
      a(imax, k) = a(i, k) 
      a(i, k) = dum 
    permi = perm(i) 
    perm(i) = perm(imax) 
    perm(imax) = permi 
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The pivoting method above is implemented in visual basic with the subroutine 
LUfac.bas12 within the module LUfac_module in the LU.xltm13 Excel spreadsheet. 
 

Forward and Back Substitution Algorithm 
 
The forward and back substitution algorithms were introduced earlier in this 
document. Returning to the original matrix-vector equation 
 

𝐴 𝑥 =  𝑏 , 

 
where 𝐴 is a matrix and 𝑥 and  𝑏 are vectors. Through the determination of the 

LU factors of 𝐴, with pivoting, we can write 𝐴 = 𝑃𝐿𝑈, and hence that 𝑃𝐿𝑈 𝑥 =  𝑏 . 

Using the elementary property of permutation matrices14 (P-1=PT) and hence we 
may write 𝐿𝑈 𝑥 =  𝑃𝑇𝑏, and hence there is effectively a rearrangement of the 

elements of b prior to the forward and back substitution, which was outlined 
earlier.  The pseudo-code for the overall method is given below. 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For a typical implementation of the forward and back substitution method, see 

LUfbsub.bas15, and its demonstration on the Excel Spreadsheet  LU.xlsm13 

 
12 LUfac.bas 
13 LU.xlsm 
14 Permutation Matrix 
15 LUfbsub_bas 

The forward and back substitution methods 
Initialise pb as b with rows exchanged as indicated by perm 

for i = 1 to n 

    pb(i) = b(perm(i)) 

 

Solve Ly=b by forward substitution (pb stores y on completion) 

for i = 1 to n 

    sum = pb(i) 

    for j = 1 to i - 1 

        sum = sum - a(i, j) * pb(j) 

    pb(i) = sum 

 

Solve Ux=y by back substitution (pb stores the solution 'x' on completion) 

for i = n to 1 step -1 

    sum = pb(i) 

    for j = i + 1 to n 

        sum = sum - a(i, j) * pb(j) 

    pb(i) = sum / a(i, i) 

 

b is over-written by pb, the solution 'x'. 

for i = 1 to n 

    b(i) = pb(i) 
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